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Abstract
We study the dielectric screening of an external point charge by a layered lattice electron gas in
the random phase approximation. The screened potential at the neighboring sites of the point
charge is found to be attractive under certain circumstances. We also investigate the impact of
band structure on the screened potential. Our results provide a possible source of intersite
attractive interactions in the extended Hubbard model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of high-temperature superconductivity in
cuprates [1] and the rapid raising of the transition temperature
to well above the melting point of nitrogen [2] ushered
in an era of great excitement for the condensed-matter
physics community. During the following years, there has
been a frenetic race in the preparation and synthesis of
compounds with increasingly higher critical temperatures.
While there are hundreds of high-Tc compounds, they all share
a layered structure made up of one or more copper–oxygen
planes. Recently, high-temperature superconductivity has been
reported in a family of Fe-based oxypnictides [3–8] which
also consist of layered quasi-two-dimensional FeAs or FeP
planes. All these suggest the layered two-dimensional structure
may play an important role in understanding high-temperature
superconductivity. Also, single-layer graphene and bilayer
graphene have attracted a great deal of attention, both
experimentally and theoretically, for technological applications
and fundamental interest [9–17].

Until now, most theoretical studies of the high-
temperature superconductivity in cuprates start from the
Hubbard model. And the extended Hubbard model, which
is the regular Hubbard model supplemented with an intersite
attractive interaction, has been applied to account for both
antiferromagnetic and d-wave superconducting states [18–20].
The origin of the intersite attractive interaction, previously,
is thought to be caused by electron–lattice coupling. Such

1 Author to whom any correspondence should be addressed.

coupling results in short-ranged attractive interaction between
electrons, when competing with the repulsive Coulomb
interaction, can lead to an overall short-ranged attractive
interaction [21–27].

Here, we propose another possible source of the intersite
attractive interaction, which arises from a purely electronic
mechanism, that is, dielectric screening of the electron–
electron interaction. In contrast to the previous work dealing
with dielectric screening of the Coulomb interaction in a two-
dimensional electron gas with an energy dispersion E(k) ∼
k2 [28–30], or in graphite intercalation compounds which have
E(k) ∼ k [31], we investigate the dielectric screening of a
Yukawa potential in a layered lattice electron gas by using
a tight-binding model in the random phase approximation.
It has been known for some time in both the cuprates and
the oxypnictides that a tight-binding approach with electron–
electron interaction added is a more appropriate picture than
that of nearly-free-electron metals [18, 32, 33].

2. Methodology

We consider electrons moving in layers of a two-dimensional
square lattice, with lattice constant a and interlayer distance
r0. Each of those planes has N lattice sites along both the
ex and ey directions. Without loss of generality, we suppose
N being odd. Besides, we use integer m to label the planes,
m = 0,±1,±2, . . .. The in-plane lattice site vector is Ri =
ixaex + i yaey , where ix and i y are both integers and ix, i y =
−(N − 1)/2, . . . , 0, . . . , (N − 1)/2. We set the origin to be
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at the center of the m = 0 plane, at the (ix, i y) = (0, 0) lattice
site. The electrons are allowed to move in each of the planes,
but cannot hop between them. The tight-binding Hamiltonian
can then be written as

Ĥ0 = −t
∑

m

∑

σ

∑

i

∑

δ

ĉ†
miσ ĉmi+δσ , (1)

where t is the nearest-neighbor hopping integral, the integer m
labels the planes, ĉ†

miσ creates an electron with spin σ at lattice
site Ri of the mth plane and δ represents a two-dimensional
nearest-neighbor vector. Ĥ0 is diagonal in the momentum
space:

Ĥ0 =
∑

m

∑

σ

∑

k∈BZ

E(k)ĉ†
mkσ ĉmkσ , (2)

where BZ stands for the first Brillouin zone, k is a two-
dimensional in-plane wavevector, −π < k · aei � π (with
i = x, y) and

E(k) = −t
∑

δ

e−ik·δ = −2t (cos kxa + cos kya). (3)

The eigenvectors of Ĥ0 can be represented as |m,kn, σ 〉 with
kn ∈ BZ and n = 1, 2, . . . , N2. With that, the one-particle
density matrix [28] can be represented as

ρ̂0 =
∑

m

∑

σ

∑

k∈BZ

fk|mkσ 〉〈mkσ |, (4)

where fk = {exp[(E(k) − Ef)/(KB T )] + 1}−1 is the
Fermi distribution function, Ef is the Fermi energy and T is
temperature.

We now introduce an external point charge (impurity) into
the system. For simplicity, we suppose it is located at the origin
with a negative unit charge −e. The bare potential seen by
another negative unit point charge at Ri of the mth plane is

V ext
m (Ri) = e2 exp(−λ|Ri + mr0ez|)

|Ri + mr0ez| , (5)

where e is the unit charge and ez is the unit vector
perpendicular to the planes. To speed up the convergence of
the series, we suppose the interaction between all charges takes
a Yukawa form. As we are only interested in the potential near
the impurity, the Yukawa form should not make a significant
difference for λ = 0.2a−1.

The perturbation of the impurity causes a change in the
charge density in each plane, which in turn induces a new
potential at Ri of the mth plane:

V ind
m (Ri) =

∑

p

∑

j

e2�Np(R j) exp(−λ|R j − Ri + (p − m)r0ez|)
|R j − Ri + (p − m)r0ez| , (6)

where �Np(R j) is the charge density change at R j in the pth
plane. The total potential is

V tot
m (Ri) = V ext

m (Ri) + V ind
m (Ri). (7)

The total Hamiltonian is now

Ĥ = Ĥ0 + Ĥ ′, (8)

Ĥ ′ = Ĥ ext + Ĥ ind, (9)

where
Ĥ ext =

∑

m

∑

i

∑

σ

V ext
m (Ri)ĉ

†
miσ ĉmiσ , (10)

and
Ĥ ind =

∑

m

∑

i

∑

σ

V ind
m (Ri)ĉ

†
miσ ĉmiσ . (11)

Ĥ ′ causes a perturbation ρ̂ ′ to the density matrix ρ̂0. According
to the equation of motion for ρ̂ = ρ̂0 + ρ̂ ′, to first order, we
have

[Ĥ0, ρ̂
′] = [ρ̂0, Ĥ ′], (12)

or, equivalently, in the eigenspace of Ĥ0, it can be expressed as

〈m1,k1, σ1|Ĥ0ρ̂
′ − ρ̂ ′ Ĥ0|m2,k2, σ2〉

= 〈m1,k1, σ1|ρ̂0 Ĥ ′ − Ĥ ′ρ̂0|m2,k2, σ2〉,
(E(k1) − E(k2))ρ̂

′
m1k1σ1,m2k2σ2

= ( fk1 − fk2)Ĥ ′
m1k1σ1,m2k2σ2

,

Ĥ ext
m1k1σ1,m2k2σ2

= δm1m2δσ1σ2

1

N2

×
∑

i

V ext
m1

(Ri)e
−i(k2−k1)·Ri = V ext

m1q
,

Ĥ ind
m1k1σ1,m2k2σ2

= δm1m2δσ1σ2

1

N2

×
∑

i

V ind
m1

(Ri)e
−i(k2−k1)·Ri = V ind

m1q
,

q = k2 − k1

(13)

and

�Np(R j) = Tr[ρ̂ ′ ∑

σ

ĉ†
pjσ ĉ pjσ ]

= 1

N2

∑

k3,k4∈BZ

∑

σ

ρ̂ ′
pk3σ,pk4σ

ei(k4−k3)·R j

= 1

N2

∑

k3,k4∈BZ

∑

σ

fk3 − fk4

E(k3) − E(k4)
Ĥ ′

pk3σ,pk4σ
ei(k4−k3)·R j .

(14)

Following the standard treatment of random phase
approximation as described in [28, 34], inserting (14) into (6),
together with (13), we derive the following self-consistent
equations:

V tot
mq = Fm(q) + D(q)

∑

p

Fm−p(q)V tot
pq , (15)

where V tot
mq is the Fourier transformation of the total potential

in the mth plane. Fm(q) is the Fourier transformation of the
Yukawa potential:

Fm(q) = e2

N2

∑

i

exp(−λ|Ri + mr0ez |)
|Ri + mr0ez| e−iq·Ri , (16)

and

D(q) = 2
∑

k∈BZ

fk − fk−q

E(k) − E(k − q)
, q ∈ BZ. (17)
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After solving the equations for V tot
mq, we can obtain the total

potential at Ri of the mth plane by Fourier-transforming back
into the real space:

V tot
m (Ri) =

∑

q∈BZ

V tot
mqeiq·Ri , (18)

this total potential is actually the screened potential.

3. Results and discussion

Below we carry out numerical calculations and analyze the
obtained results. The parameters used in our model are: in-
plane lattice constant a = 3.84 Å and the nearest-neighbor
hopping integral t = 0.3 eV; these are numbers typical for
the cuprates. The Yukawa screening constant is set to be
λ = 0.2a−1. The number of lattice sites along the ex (ey)
direction is N = 201, and we adopt periodic conditions in
the two-dimensional lattice. Due to the discreteness of the
lattice, the calculation of the Fourier transform of the Yukawa
potential Fm(q) cannot be converted into an integral as in [28],
the summation over lattice site i can only be done numerically:

Fm(q) = e2

N2a

∑

ix

∑

iy

exp(−λa
√

i 2
x + i 2

y + (m r0
a )2)

√
i 2
x + i 2

y + (m r0
a )2

× e−iaq·(ix ex +iyey ). (19)

When m = 0 and ix = i y = 0, this term in the summation
is formally infinite. In the numerical calculations, we replace
this term by a constant e2U/a, corresponding to the on-site
repulsive potential between two electrons. For U = 2, the on-
site repulsive potential is about 7.5 eV.

First, we consider the one-layer case. In this case, the
value of m can only be 0, so we have

V tot
0q = F0(q)

1 − D(q)F0(q)
, (20)

which is the standard two-dimensional dielectric screening in
the random phase approximation. The difference between
our model and the regular two-dimensional electron gas is
that the wavevector q must be in the first Brillouin zone in
our case while it can be arbitrary in the two-dimensional
electron gas. Also when computing D(q), we use the tight-
binding dispersion instead of the free-electron dispersion in the
denominator. The screened potential in the real space is then

V tot
0 (Ri) =

∑

q∈BZ

V tot
0q eiq·Ri . (21)

In figure 1, we plot the screened potential energy at the six
nearest-neighbors surrounding the impurity at the origin as a
function of Fermi energy Ef. Due to symmetry of the square
lattice, we consider only the lattice sites between the two lines
defined by i y = 0 and i y = ix . First, because of the particle and
hole symmetry, the potential energy is symmetric with respect
to Ef = 0. So, we can consider only negative Ef. Second,
there does exist an overscreening of the Yukawa potential, with
a negative potential energy between two like external charges.

Figure 1. In the one-layer case, the screened potential energy (in
units of eV) at the six nearest-neighbors surrounding the external
point charge impurity at the origin as a function of Fermi energy Ef

(in units of t). 1, 2, 3, 4, 5 and 6 correspond to lattice sites
(ix , iy) = (1, 0) (black solid), (1, 1) (red dashed), (2, 0) (green
dotted), (2, 1) (blue dashed–dotted), (2, 2) (cyan dashed–double
dotted) and (3, 0) (magenta short dashed), respectively.

As we can see, in the range of Ef = −3.65t to Ef = −2.42t ,
the screened potential at the nearest-neighbor site (1, 0) is
attractive. As for the next-nearest-neighbor site (1, 1), the
screened potential energy is negative from Ef = −3.93t to
−2.96t and from Ef = −0.5t to 0. At about Ef = −3.91t , the
negative potential energy reaches a maximum magnitude at site
(2, 0), which is two lattice constants away from the impurity,
and the potential energy is about −0.27 eV. The screened
potential energy at other neighboring sites can also be negative,
its magnitude is small in the range between Ef = −1.88t
and 0. Close to Ef = −4t , the magnitude becomes much
larger, suggesting a strong attractive interaction between two
like external charges. In the following, we will focus on
the Ef = −3.91t and −0.27t cases; they correspond to the
maximum negative potential energy at all neighboring sites and
the optimal doping level in cuprates, respectively. The number
of electrons per site is 〈n〉 = 0.0145 and 0.85 for the two cases,
respectively.

In figure 2, we plot the screened potential energy as a
function of the distance |Ri | between the origin and the lattice
site (ix, i y), at Ef = −3.91t and −0.27t , respectively. In both
cases, there is negative screened potential energy at certain
neighboring sites of the impurity, leading to an attractive
interaction between the external negative point charge at the
origin and another negative charge at those neighboring sites.
Here, we plot the results using both the Yukawa potential and
Coulomb potential as the bare potential. As we can see, there
are no qualitative differences between them, with only minor
quantitative ones. So the Yukawa potential can well describe
the long range characteristic of the system. If we increase the
value of λ, finally the results will approach those (results) of
the Hubbard model, which is beyond the scope of the current
paper.

In order to investigate the impact of interlayer coupling on
the dielectric screening, we first consider the two-layer case.
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Figure 2. In the one-layer case, the screened potential energy (in
units of eV) as a function of the distance |Ri | (in units of a) between
the origin and the lattice site (ix , iy), at (a) Ef = −3.91t and
(b) Ef = −0.27t , using both Yukawa potential (black) and Coulomb
potential (red) as the bare potential.

The impurity is located at the origin of the m = 0 plane and
we add another (m = 1 layer) square lattice directly above the
m = 0 plane. By solving (15), we have

V tot
0q = F0(q) + D(q)[F1(q)2 − F0(q)2]

[1 − D(q)F0(q)]2 − [D(q)F1(q)]2
,

V tot
1q = F1(q)

[1 − D(q)F0(q)]2 − [D(q)F1(q)]2
.

(22)

In the following, we will study mainly the screened
potential energy at the neighboring sites (in the m = 0
plane) of the impurity and its relation to the interlayer
distance r0. Because of our choice of the on-site repulsive
potential U , when the interlayer distance is smaller than r min

0 ,
where rmin

0 satisfies the relation exp(−λrmin
0 )/rmin

0 = U , the
bare interaction between the impurity and another negatively
charged impurity at the site (ix, i y) = (0, 0) in the m = 1
plane no longer obeys the Yukawa form. Instead, it is replaced
by a constant U , regardless of r0. So, we only consider what
happens when r0 > rmin

0 . Based on the parameters in our
model, rmin

0 is 0.456 (in units of a).

Figure 3. In the two-layer case, the screened potential energy (in
units of eV) at the neighboring sites (in the m = 0 plane) of the
external point charge impurity as a function of the interlayer distance
r0 (in units of a). (a) Site (2, 0), Ef = −3.91t and (b) site (1, 1),
Ef = −0.27t .

Since we are most interested in the neighboring site that
has a larger magnitude of negative potential energy than other
sites and from the results of the one-layer case shown in
figure 2, we focus on the site (ix, i y) = (2, 0) when Ef =
−3.91t and site (1, 1) when Ef = −0.27t .

In figure 3, we plot the screened potential energy at the
neighboring sites (in the m = 0 plane) of the impurity as a
function of the interlayer distance r0, at Ef = −3.91t and
−0.27t , respectively. As we can see, the interlayer distance
affects the screened potential energy in a similar way. When
the interlayer distance is small, the addition of the m = 1 layer
actually diminish the overscreening effect, compared to the
one-layer case. The strength of the screened negative potential
energy first increases with increasing interlayer distance, up
to an optimal value r opt

0 , where the negative potential energy
reaches a maximum magnitude, which is larger than its
one-layer counterpart, thus leading to an enhanced attractive
interaction between the external negative point charge and
another negative charge at that site. After that, the strength
of the screened negative potential energy decreases with
increasing interlayer distance, and finally converges to its one-
layer value.
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In figure 3(a), Ef = −3.91t , the screened potential
energy at site (2, 0) has a larger negative magnitude than
other sites. At r opt

0 = 1.41a, corresponding to an interlayer
distance 5.41 Å, the screened negative potential energy reaches
a maximum magnitude, the strength of which is about 0.64%
larger than that in the one-layer case.

Then when Ef = −0.27t , site (1, 1) has the largest
magnitude of screened negative potential energy. r opt

0 = 1.14a
(4.34 Å) and there is a 1.57% enhancement in this case, as
shown in figure 3(b).

Next, we consider the three-layer case. Besides the m = 0
and 1 planes, we add a m = −1 plane, symmetric with the
m = 1 plane (with respect to the m = 0 one). The external
point charge impurity is still located at the origin. In this
scenario, the screened potential energy in each of the planes
is

V tot
0q = {F0(q) + D(q)[2F1(q)2 − F0(q)2 − F0(q)F2(q)]}

× {[1 − D(q)F0(q)]2 − 2[D(q)F1(q)]2 − D(q)F2(q)

+ D(q)2 F0(q)F2(q)}−1,

V tot
1q = {F1(q)}{[1 − D(q)F0(q)]2 − 2[D(q)F1(q)]2

− D(q)F2(q) + D(q)2 F0(q)F2(q)}−1,

V tot
−1q = V tot

1q .

(23)

Then, we adopt a periodic condition along the ez

direction. Suppose there are 2N⊥ + 1 layers with m =
−N⊥, . . . , 0, . . . , N⊥ and the external point charge impurity
is located at the origin. After Fourier-transforming V tot

mq and
Fm(q) in the ez direction, we get

V tot
mq =

N⊥∑

k⊥=−N⊥

V tot(k⊥, q)ei 2πk⊥m
2N⊥+1 , (24)

where

V tot(k⊥, q) = F(k⊥, q)

1 − (2N⊥ + 1)D(q)F(k⊥, q)
, (25)

and

F(k⊥, q) = 1

2N⊥ + 1

N⊥∑

m=−N⊥

Fm(q)e−i 2πk⊥m
2N⊥+1 . (26)

In our calculation, we take N⊥ = 10, so there are a total of
21 layers. In figure 4, we plot the comparison of the screened
potential energy at the neighboring sites (in the m = 0 plane)
of the impurity as a function of the interlayer distance r0 in the
two-layer, three-layer and periodic twenty-one-layer cases, at
Ef = −3.91t and −0.27t , respectively.

As we can see, the screened potential energy in the
periodic twenty-one-layer case is barely distinguishable from
the three-layer one, in the range of the interlayer distance
considered in our calculation, suggesting the three-layer
structure may be enough to account for the impact of interlayer
coupling on the dielectric screening. So we can only compare
the two-layer and three-layer cases. In both cases, the
dependence of the screened potential energy on the interlayer
distance shows some similarity, but there are still differences
between them.

Figure 4. The comparison of the screened potential energy (in units
of eV) at the neighboring sites (in the m = 0 plane) of the impurity
as a function of the interlayer distance r0 (in units of a) in the
two-layer (black solid), three-layer (red dashed) and periodic
twenty-one-layer (green dotted) cases. (a) Site (2, 0), Ef = −3.91t
and (b) site (1, 1), Ef = −0.27t .

In figure 4(a), Ef = −3.91t . When r0 < 0.96a (3.67 Å),
two-layer has a stronger overscreening effect at site (2, 0) than
three-layer. After that, the trend reverses. In the three-layer
case, the r opt

0 is also 1.41a, coinciding with that in the two-layer
one. The maximal strength of the negative potential energy
increases by 1.33% with respect to the one-layer case, which
doubles the enhancement of the two-layer case.

At Ef = −0.27t , compared to the two-layer case, the
three-layer has a weaker overscreening effect at site (1, 1)

when r0 < 0.77a (2.96 Å) and a stronger one after that. The
r opt

0 in the three-layer case is 1.09a (4.18 Å), which is slightly
smaller than its two-layer counterpart. At this interlayer
distance, the three-layer can enhance the magnitude of the
screened negative potential energy by 3.56% with respect to
the one-layer case, which is also about twice as large as the
two-layer one, as can be seen in figure 4(b).

Finally, we investigate the impact of band structure on the
screened potential. We add a next-nearest-neighbor hopping
integral t ′ in (1). The dispersion now is

E(k) = −2t[cos(kxa) + cos(kya)] − 4t ′ cos(kxa) cos(kya).

(27)

5
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Figure 5. In the one-layer case, the screened potential energy (in
units of eV) at the nearest-neighbor site (1, 0) of the external point
charge impurity as a function of the number of electrons per site 〈n〉,
at various value of the next-nearest-neighbor hopping integral t ′ (in
units of t).

In figure 5, we plot the screened potential energy at the nearest-
neighbor site (1, 0) of the external point charge impurity as a
function of the number of electrons per site, 〈n〉, at various
values of the next-nearest-neighbor hopping integral t ′ (in units
of t) in the one-layer case. Due to the existence of the t ′ term,
there is no particle and hole symmetry anymore, so the results
are not symmetric with respect to 〈n〉 = 1. But the results of t ′
and −t ′ are symmetric with respect to 〈n〉 = 1. This is because
substituting k by k+(π/a, π/a) in (27) and changing t ′ to −t ′
reverse the sign of E(k). Because of this symmetry, we can
focus on the 〈n〉 < 1 side. As we can see, from t ′ = 0.75
to 0.3, there is no overscreening, but the t ′ = 0.9 case is
an exception; there exists overscreening from 〈n〉 = 0.92 to
〈n〉 = 1. From t ′ = 0.15 to −0.9, there are overscreening
regions on the 〈n〉 < 1 side, but there are differences among
them: from t ′ = 0.15 to −0.45, the maximum magnitude of
the negative potential energy is increasing with decreasing t ′
and it appears at almost the same 〈n〉, at about 〈n〉 = 0.1.
Also, the overscreening region is enlarging with decreasing t ′.
From t ′ = −0.6 to −0.9, the overscreening region is shifted
towards half-filling. At t ′ = −0.75, we plot the screened
potential energy at the neighboring sites of the external point
charge impurity as a function of the number of electrons per
site 〈n〉 in figure 6. It is remarkable that the potential near half-
filling on the 〈n〉 < 1 side resembles the effective potential
postulated in the tUV model [35]. This is a situation where
one has a dominant nearest-neighbor attractive pair potential
near half-filling, which is favorable for the cuprates to produce
d-wave pairing. A realistic value of t ′ in the cuprates is about
−0.45 [36], which is not quite as negative as we would like it
to be, but it is not too far away either; at least the sign is right.

4. Conclusions

In conclusion, we have studied the dielectric screening of an
external point charge in a layered lattice electron gas by using
the random phase approximation. The effective interaction
between two neighboring point charges (of the same sign) is
found to be attractive over a wide range of interlayer distances.
The effect of different numbers of layers on this interaction

Figure 6. In the one-layer case, the screened potential energy (in
units of eV) at the six nearest-neighbors surrounding the external
point charge impurity at the origin as a function of the number of
electrons per site 〈n〉, at t ′ = −0.75 (in units of t). 1, 2, 3, 4, 5 and 6
correspond to lattice sites (ix , iy) = (1, 0) (black solid), (1, 1) (red
dashed), (2, 0) (green dotted), (2, 1) (blue dashed–dotted), (2, 2)
(cyan dashed–double dotted) and (3, 0) (magenta short dashed),
respectively.

is studied. We have also investigated the impact of band
structure on this screened potential. It seems that overscreening
can depend significantly on detailed band structures as noted
by Lin and Shung [31] before. The addition of an diagonal
hopping term (t ′) is essential in obtaining nearest-neighbor
overscreening near half-filling.

We note that, although part of our results resembles the
continuum model calculation of Visscher and Falicov [28],
there are important differences. Our results apply in the
high density regime where the random phase approximation
is better justified. The interesting band effects, such as the
significant variations of potentials with band filling and the
discrete separation between the impurities, are of course absent
in the earlier treatments. Compared to the work done by
Choy and Das [37], where they derived an attractive pairing
potential from a repulsive Hubbard model in some region of
the momentum space, we obtain a nearest-neighbor attractive
potential in the real space, which is essential in explaining the
phenomenology of cuprates.

Finally, it would be of further interest to go beyond
the random phase approximation [29, 38] to calculate more
accurately the pair potential. Although the effective electron–
electron interaction is, in general, more complicated than the
pair potential between two external point charges, our results
provide a possible source of the intersite attractive interaction
in the extended Hubbard model. In addition, our results could
be relevant to the behavior of a collection of charged species
such as impurities or dopants near the conduction planes. The
attraction may lead to phase separation of the species.
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